Please take a moment to complete this survey below

Library's collection Library's IT development Cancel

Information loss in deterministic signal processing systems 1st ed.

Author
  • Geiger, Bernhard C.
Additional Author(s)
  • Kubin, Gernot
Publisher
Cham, Switzerland : Springer International Publishing, 2018
Language
English
ISBN
9783319595337
Series
Understanding complex systems
Subject(s)
  • COMPUTATIONAL COMPLEXITY
  • ENGINEERING
  • SYSTEM THEORY
Notes
. .
Abstract
This book introduces readers to essential tools for the measurement and analysis of information loss in signal processing systems. Employing a new information-theoretic systems theory, the book analyzes various systems in the signal processing engineer’s toolbox: polynomials, quantizers, rectifiers, linear filters with and without quantization effects, principal components analysis, multirate systems, etc. The user benefit of signal processing is further highlighted with the concept of relevant information loss. Signal or data processing operates on the physical representation of information so that users can easily access and extract that information. However, a fundamental theorem in information theory—data processing inequality—states that deterministic processing always involves information loss.  These measures form the basis of a new information-theoretic systems theory, which complements the currently prevailing approaches based on second-order statistics, such as the mean-squared error or error energy. This theory not only provides a deeper understanding but also extends the design space for the applied engineer with a wide range of methods rooted in information theory, adding to existing methods based on energy or quadratic representations.
Physical Dimension
Number of Page(s)
1 online resource (xiii, 145 p.).
Dimension
-
Other Desc.
ill. (in color.)
Summary / Review / Table of Content
Introduction --
Part I: Random Variables --
Piecewise Bijective Functions and Continuous Inputs --
General Input Distributions --
Dimensionality-Reducing Functions --
Relevant Information Loss --
II. Part II: Stationary Stochastic Processes --
Discrete-Valued Processes --
Piecewise Bijective Functions and Continuous Inputs --
Dimensionality-Reducing Functions --
Relevant Information Loss Rate --
Conclusion and Outlook.
Exemplar(s)
# Accession No. Call Number Location Status
1.02008/20621.3822 InfOnline !Available

Similar Collection

by author or subject